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By Joseph A. Drischler

SUMMARY

An integral equation for obtaining the unsteady air forces on finite wings

in subsonic compressible flow is presented. This equation is applicable for any

arbitrary time-dependent motion and can be utilized for flexible as well as rigid

wings. The approach involves the derivation of an integral equation relating the

unknown pressure distribution to any arbitrary time-dependent downwash distribu-

tion. The form of the equation is such that it should lend itself readily to

modern high-speed computers for obtaining pressure distri0utions. Special cases

of the integral equation are treated for two-dimensional incompressible flow and

are presented in an appendix.

INTRODUCTION

With regard to the analytical determination of the unsteady air forces on

wings undergoing sinking or pitching motion in subsonic compressible flow, most

of the past efforts have been directed toward the determination of the forces on

a two-dimensional wing in incompressible flow. These efforts have led to the

Wagner function (ref. i) and the _dssner function (ref. 2) which determine the

unsteady forces on a wing in sinking motion and penetrating a sharp-edge gust,

respectively. In references 3 and 4 approximate methods were used to obtain the

forces on a few finite wings in incompressible flow. As far as the author is

aware, the only work done on subsonic compressible flow, is for a two-dimensional

wing in sinking and pitching motion, the results of which are presented in refer-

ences 5 to 7.

The purpose of this paper is to present an integral equation for obtaining

the unsteady air forces on finite wings in subsonic compressible flow. The equa-

tion is applicable for any arbitrary time-dependent motion and can be utilized for

flexible as well as rigid wings. The approach involves the derivation of an inte-

gral equation relating the unknown pressure distribution to a prescribed time-

dependent downwash distribution. The availability of an equation in a form

which can be rapidly evaluated makes possible the use of numerical procedures

to obtain the unsteady air forces which would be useful in calculating the



dynamic response of airplanes to such forcing functions as those associated with
gusts and blasts.

SYMBOLS

a

c

CL

g( )

h( )

E 21()

Jn( )

Kn( )

K(x0,Y0)

k

M

P

_p

q

speed of sound

local wing chord

lift coefficient

time history of loading distribution (see eq. (AS))

loading distribution associated with apparent mass (see eq. (A3))

Hankel functions of second kind of order n

Besse! functions of first kind of order n

modified Bessel functions of second kind of order

kernel function of integral equation

reduced-frequency parameter, (_c/2V)

Mach number

Laplace transform variable

local lifting pressure, positive upward

dynamic pressure, pV2/2

+ +

R0 = Ix02 + _2(y02 + z2)

s, s' half-chord lengths of travel

SO= S - S'

S wing area

SO region common to wing area S

2VT
2V___ttcand -_--, respectively

and circle (¥t - Xo)2 + yo 2 = --



u( )

V

wO,wl,W

t,T time variables

unit step function

free-stream velocity

do_mwash functions

x,y,z,_,_,x',_',k

x 0 = x -

X O' = X' - _ '

YO = y -

angle of attack

M 2

Cartesian coordinates

_L,_T leadlng-edge and trailing-edge coordinates 3 respectively

5( ) Dirac delta function

p fluid density

velcoitypotential

acceleration potential

circular frequency

A bar over a quantity indicates the Laplace transform of that quantity; a
f%

bar on the integral sign % indicates that the f_nite part of the integral is

to be retained.

ANALYSIS

Derivation of the Integral Equation Relating the Pressure Distribution

and anArbitraryTime-Dependent Downwash

The main purpose of this analysis is to derive an integral equation that

relates the unsteady pressure distribution to a known or prescribed general
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down_sh distribution on rigid or flexible finite wings in a compressible sub-

sonic flow. The integral equation referred to can be obtained by employing the

acceleration potential to treat, by means of doublet distributions, the linearized

boundsmy-value problems for time-dependent motion of finite wings.

The linearized partial differential equation for the acceleration potential

is (referred to a moving coordinate system x,y_z)

_x2 _ _z2 _ _ + _) _ : o
(l)

The dependent variable in equation (1) is directly proportional to a perturbation

pressure field and is related to a velocity potential _ as follows:

= _t + V_x =-ZXPp (2)

The solution of equation (2) can be obtained with the use of a Laplace transforma-

tion with respect to t. For an assumed condition of no disturbance before

t = O, that is, (_)t=O = 0 it follows that

p_ + v_ - Y (3)

where p is the transform variable and the bar over a quantity represents the

transformed quantity - for example,

= e -pt _(t) dt

Equation (3) can be integrated with respect to x to give

PXo F x0 P_
= vl_e V _] e={T-_(_,yo, z]p)d_ (4)

where x0 = x - _ and YO = Y - q" The lower limit of integration is chosen for

convenience to satisfy the condition that _ vanishes as x-_-_.

A fundamental solution to equation (I) for subson{c compressible flow is

(see, for example, ref. 8)



 (xo =
(7)

i 2 2 _2z2where RO = Xo + _2y 0 + and f is an arbitrary f_mction and represents

the magnitude of a pressure doublet.

In most analyses it is convenient to use the response to a unit step function

or unit impulse function to obtain the response to an arbitrary forcing function.

Therefore, for convenience f(t) is chosen as a unit step pressure doublet U(t),

where

f(t) = U(t) = 0 (t _ 0)I (6)

(t >f(t) = U(t) = i

Substitution of equation (6) into equation (5) yields

*( x0'yO' z;t) 4_ _-_U(t V_ 2
(7)

where _ now represents the potential at x_y_zjt due to a unit step pressure

doublet that occurred at t = 0 and was located in the xy-plane at _q,0'.

Taking the Laplace transform of equation (7) to obtain _ and then substituting

into equation (4) gives the following Laplace transform of the velocity poten-

tial corresponding to the unit step function:

I- P(_2x+-x _1_o ofx ___ll__\v_2V v_2
4_V _z _p

dR

where R = _2 + _2(y02 + z2_. The inverse transform of equation (8)yields

(_(x,y, zjt) = 4_1 f;O_ _z_---fR_J I - VI--(xO- _2 +_D_-_d__ _
(9a)

which is in agreement with equation (16) of reference 9.
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It should be noted that the argument of the unit step function in equation (9a)

has two zeros: namely_

= _l = -(Vt - x0) + MI(Vt - x0) 2 + y0 2 + z2

and

= _2 = -(Vt - xo) - MI(Vt - Xo) 2 + yo 2 + z2

However, it can be shown that the argument is positive only when _ is greater

than _i" Consequently equation (ga) can be rewritten as

Substituting

yields

Lxol dR (_)
_(x,y,z;t) = 4-_

'I

Z1 into equation (9b) and performing the indicated operations

I( Vt - x0_(x,y,z;t) 4_V(y02 + z2)Vt _ Xo)_+ y02 + z2 xo )_xo2+_2(yo2+z2
(io)

For linear theory_ the downwash in the z = 0 plane associated with the velocity

potential _ can be written as

 o(xo, o,tl= (ii)

which when applied to equation (i0) becomes

w0(x0,Y0;t)

V
I | Vt - x 0

jI(vT-x_ +_o_
Xo o _U_Vt-M (Vt-xo)2+y021+

(12)

Equation (12) now represents the indicial downwash at x,y;t due to a unit step

pressure doublet at _,_;0. The downwash at x,y;t due to a time-varying pres-

ap(_,u;t)
sure doublet of magnitude can be written by means of the superposition

P
integral as

yt t Ap(_;t-T) _W0(X0,N0;T) dT (13a)Wl(xO3Y0;t) = AP(_;t-tl)w0(x0_Y0;tl) + - _T
P 1
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Wl(X0,Y0;t) =_p(_,N;t-tl) w0(x0,Y0;tl ) + f t-tl _(_,N;T)_W0(X0'Y0 ;t-T) dT
P _ 0 P _T

where tl = _02 + _2y02- M2x0)/_2V is the value of t for which the argument

of the unit step function in equation (12) vanishes. From equation (12) it can be

seen that the downwash is zero everywhere in the z = 0 plane except within the

circle (Vt - x0) 2 + y02 = (the region for which the argument of the unit

step function is greater than zero). The interior region of the circle is repre-

sentative of a region of disturbance which is due to a doublet moving downstream

with velocity V and whose waves are propagating outward at a rate equal to the

speed of sound a. Therefore, by distributing pressure doublets over this area,

the downwash at x,y can be obtained for any arbitrary time-dependent pressure

distribution by means of the following equation:

w(x,y;t) = ffWl(X0,Y0;t) d_ dh

S0

(14)

where the bars on the integral signs indicate that the finite part of the integral

is to be retained and SO

(Vt- xo) 2 + yo 2 = (__)2

lowing sketch:

is the area which is common to both the circle

and the area of the wing S, as can be seen in the fol-

x

t- y

Sketch i

Substituting w0 from equation (12) into equation (1]Sa) and then substituting

the resulting expression into equation (14) gives the following expression for the

downwash:
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SoL  xo + to

+ V _t Ap(_,q;t-T)/q d_
tl _VT- xo)2 + y02_ 3/2

d_ d_ (15)

(Mtxo 2 + _2y02 - M2Xo)
where as mentioned previously x 0 = x - _, YO = Y - q' tl =

Vp 2

and SO is the area which is common to both the circle Vt y0 2

and the area of the wing S. Since equation (15) indicates that the finite part

of the integral must be retained_ an appropriate limiting procedure similar to the

one presented in reference i0 must be devised for the regions near the singular-

ities in order that the equation may be adapted to modern high-speed computers.

Application of Downwash Equation (15) to SpeCial Cases

In this section it is shown that equation (15) reduces to the kernel function

for the oscillating wing. In addition, it is shown that the correct value of

Ap/q is obtained for t = O. An equation for three-dimensional incompressible

flow and for two-dimensional compressible flow is also given.

Reduction of downwash equation (15) for oscillatin_ win_s.- For oscillating

finite wings in subsonic flow the pressure coefficient can be expressed as

_p(_,_;t) = ei_t _p(_,h)
q q

where m is the circular frequency of oscillation. By using this pressure coef-

ficient, equation (15) can now be rewritten as

w(x,y; t) = Vei_t f7 Ap(_, ,])K0(xO,Yo)d_ dN
8_ q

SO

where

1 -i6Dtl __ Vt_l -- x__0

 o(xo,,o):o kJ(wj-xo)2+,ox0 21 _t e_itUTdT

+ +V

_x02 + :[}2y0 i [(V, - xo)2 + yo 215/2

(16)
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and is the kernel function of the integral equation relating the lift and down-

wash distributions of oscillating finite wings in subsonic flow. In order to

isolate the transient and steady-state parts of equation (16), the integral is

separated into two intervals: one interval from tI to _ minus one interval

from t to _. Then, for the steady part only

i -imtlF Vtl - Xo

= Lt'-'(......yo 2 2
Vtl - Xo) 2 + YO

tl [(VT- X0) 2 + y02_ 3/2

(17)

By means of the transformation

+ 2 + 2
VT - x0 =

_2y 0

it can be shown that equation (17) is equivalent to equation (B8) of reference ll.

Evaluation of pressure coefficient as t--_O.- As t--_O, the radius of the

circle associated with equation (15) approaches zero. (See sketch 1.) Conse-

quently, since the area of integration approaches zero, it is permissible to

assume that the pressure is uniform over this region - that is

Ap(_, _;t) Ap(x,y; O)
= . Equation (15) then takes the following form:

q q

w(x,y;t) = --_VAP(x'y;O)
8_ q

t+ V dT

tI [(VT-xo) 2

(18)

Evaluation of equation (18) at the limit t--_O, gives
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hence the well-known result

Mv_p(x,y;o)
w(x,y;o)= -4 q

np(x,y;o)_-4 w(x,y;O)
q M V (19)

General unsteady three-dimensional incompressible flow (M = 0).- For three-

dimensional incompressible flow (M = 0) the radius of the circle (sketch i)

expands with infinite velocity so that the area of integration becomes the area of

the wing. With tI = 0 equation (15) then becomes

-V2 S_7f0 tw(x,y;t) - 8_

nP(_'_;t-_)d_d_ an
q

[(wxo)+
(20)

or for two-dimensional flow

w(x;t) =---V2 f _T d_ _0 t
4_ _L

_p(_;t-w)

q

VT - Xo) 2

d_ (21)

General unsteady two-dimensional subsonic flow.- For two-dimensional subsonic

flow the pressure coefficient is independent of h and the limits of integration

in the h-direction are dictated by the circle only. However, examination of

equation (15) shows that Ap/q is a function of _, h, and tI and, since tI

is a function of _, equation (15) cannot be utilized to obtain two-dimensional

results. Therefore, equation (12) is developed to yield two-dimensional results.

By integrating equation (12) with respect to _ there is obtained

_y+ i(-_)2-(Vt-xo)2

[ vtxo 1
= _ + xq dn

w0(x;t) _V . 1_2 yo2/X02 + j32.y.0

_oVtv_- xo)+_o2

J

_ I(Vt) 2 - M2(Vt - xO) 2

2_Vxo(Vt- - Xo) vt _)/-V--'_'I - M) < x 0 < N (22)\ _. _.-(i +
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By utilizing the superposition integral and distributing the doublets between

vt(Vt M) and _ x += x - I + = i - M), this expression for the downwash can

be written as

V2 d_

w(x;t) = -K-_ _i MXo

V_ _p(_;t-T) dT
q

_ "_,2 _VT) 2 M2(VT x0) 2VT Xo/ - -

t VT Ap(_ _t-T) dT

V2 yx _2 d_f q(w-xo) xo)
v-Ui:M)

(23)

where

and

_i =

_2 =

f Vt(l + M)
x

M

_L

x + Vt(l- M)

M

_T

It might be noted that for M = 0 equation (23) reduces to

w(x;t) =__2 _LT _0 t fkp(_;t-T)q4_ d_ (V_ - x0)2

x Vt(l + M) > _L1M

(x - yt(l +M) <_L)M

(x + Vt(l - M) <_T)M

(x +Vt(l - M) >_T)M

dT (24)

which is in agreement with equation (21). A more thorough investigation of equa-

tion (24) is made in the appendix wherein it is shown that equation (24) can be

expressed in a form that will yield the well-known Wagner and K_dssner functions.
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CONCLUDINGREMARKS

The main purpose of this paper was to present an integral equation relating
the downwashto a general unsteady pressure distribution. The integral expres-
sion is of a form that should lend itself readily to modernhigh-speed computing
machines.

Expressions for three-dimensional incompressible flow and two-dimensional
compressible flow are given and it can be seen for these two special cases that
the amount of work involved in obtaining the pressure distributions is consider-
ably reduced. In particular, for two-dlmensional incompressible flow a method
has been developed in the appendix for the rapid determination of the growth of
lift for any arbitrary time-dependent downwashdistribution, with special atten-
tion being given to a wing having a sudden change in angle of attack or pene-
trating a sharp-edge gust.

It might also be noted that the kernel function for oscillating finite wings
is obtained as a Special case of the integral expression.

Langley Research Center,
National Aeronautics and SpaceAdministration,

Langley Station, Hampton,Va., October 3, 1962.
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APPENDIX

DETERMINATIONOFTHEWAGNERANDKUSSNERFUNCTIONS

The integral equation relating the downwashand pressure distributions on a
two-dimensional wing in incompressible flow is given as equation (24) in the text
and is restated here for convenience:

w(x;t) =- V24-_".#'c/2 d_ 70 t Ap(_;t-T)
J-c/2 (v_- xo)2

The airfoil is assumed to be moving in the negative x-direction and with the

leading edge and trailing edge at _L = -c/2 and IT = c/2, respectively. By

means of the transformations

s- Vt s' = V___L
c/2 c/2

x' = x _, =_L
c/2 c/2

x0' = x' - _' S0=S- S'

equation (A_I) becomes

1 s ap(_' _so)

_(x';s) =-_ L d,' fo q
l (s - xo') 2

ap(_'_s')

L 1 fos= _'V d_' q
4_ i (s o - x0')2

ds I

ds' (A2)

In reference 12 it has been shown that the chordwise distribution of indicial

lift on a wing undergoing sinking motion or penetrating a sharp-edge gust never

varies and is identical to the load distribution on the wing in steady flow. It

has also been shown that associated with the lift for the sinking wing is an

apparent mass term concentrated at t = 0. On this basis it is assumed that

_ (A3)
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_/-_- is thewhere g(s') is the time history of the loading distribution, _ [7

loading distribution for steady flow, h(_') is the loading distribution associ-

ated with the apparent mass, and 8(s') is the Dirac delta function with the

following properties:

/" 5(s')ds' = 1

and

_ F(s-s') 5(s')ds' = F(s)

The form of equation (A3) is exact, within the application of linearized

theory, for the downwash considered herein. For any other downwash distribution,

additional terms are required on the right-hand side of equation (A3). By sub-

stituting equation (A3) into equation (A2) and integrating both sides of equa-

tion (A2) over the chord of the wing, a simple integral equation for g(s') can

be obtained. The pressure distribution chosen in equation (A3) can be used to

obtain the total lift and moments for a wing given a sudden change in angle of

attack or penetrating a sharp-edge gust. Once the total lift and moment for a

uniform downwash distribution is known, the total lift and moment for any down-

wash distribution can be obtained by means of existing reverse-flow theorems.

When equation (A2) in conjunction with equation (A3) is integrated with

respect to x', the resulting form is

(A4)

Before proceeding to evaluate g(s') in equation (A4), it is necessary to deter-

mine h(_'). By eliminating the integration with respect to x' and letting s

approach zero, equation (A4) becomes

w(x';o) : -v__ h(_') d_'
4_ l(x' - _')2

(AS)

Then integrating by parts and inverting gives

d_ (A6)
dx _V_ - x2 d-I x -

14



or

= -- dx' d_ (A7)

(x' - _){i - (x') 2

where the upper limit of integration with respect to x' is chosen to satisfy the
Kutta condition on the trailing edge. It is of interest to note that for

w(_;o)
- _ equation (A7) yields

V

h(x) = 4=ll _ x2 (A8)

Substituting equation (A8) into equation (A3) gives

Ap(_;0) = 4m a(s)_- - _2 (A9)
q

_ich is in agreement with the result presented in reference 12.

Performing the integrations with respect to x' and _' on the first term

,n the right-hand side of equation (A4) results in the following equation:

1 w(x';s) dx'
i V 1 dx' _ )2 = _ g(s')+ z z (s xo' V so

ds'

For a sudden change in angle of attack,

into equation (AI0) together with h(x)

_-_----- = _ substituting this expression

from equation (A8) yields

c_ s + 2) = g(s') SO ds' (All)

For a wing penetrating a sharp-edge gust w_x',sjf" _ = _U(s-x'-l)} substituting this
V

expression into equation (A!0) together with h(x) = 0 yields

yO s #+2c_s = _ g(s') So ds' (A12)
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Taking the Laplace transform of equation (All) gives

(A13)

which, when solved for _(p), yields

_(p) _- 4_I(P) (As_)

p_0(pl+_l(p)]

where Kn(p) is the modified Bessel function of the second kind of order n. An

asymptotic expansion of Kn(p) for large values of p (corresponding to small

values of s) when substituted into equation (AI4) gives

or

_(p)_2_{'_+ i 1 + 7 \
4p2 8p 6-_p4+" " "_V

s2 _I__2+ ...)16 + 384
(AmSi

The lift coefficient is

eL = I_ Ap(_'_s) d_'
2 -i q

2 I
+ 4_8(s)i_ - _'_]d_'

1_ + 4 16 + + " " " + _(s (AI6)

Equat%on (AI6) now represents an approximate series expansion of the Wagner

function. The first terms are also in agreement with the series expansion of the

approximation

2s)CL = 2_m 4 +

16



given in reference 13. It is pointed out that, if in equation (AI4) p is

ik (where k is a reduced-frequency parameter defined by k = ___qcreplaced by 2V

and _ is the circular frequency of oscillation), the following result is
l

obtained:

ik 2)(k) + 2)(k

(AI7)

where C(k) is the Theodorsen function and, as pointed out in reference 13, is

equal to ik times the Fourier transform of the Wagner function.

A similar analysis of equation (AI2) yields the following results:

Z(p)_- 4e-P (A S)
p2 o(p)+Kl(p)]

(AI9)

The expression within the brace of equation (AI9) is the Sears function and again,

as pointed out in reference 13, is equal to ik times the Fourier transform of

the _dssner function.

It is of interest to note that the solution of equation (All) for g(s) will

yield directly results that are proportional to the total lif% whereas in pre-

vious analyses it was necessary to determine the vorticity in the wake before the

total lift could be obtained. This is due to the fact that the present method is

based on the acceleration potentialj whereas past methods were based on the

velocity potential.
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